
ao~291' NORTHESERN UN4IV EVANSTON IL DEPT OF ELECTRICAL ENS-ETC F/S 9/2
SEL.F4ETRIC SOFTWARE. VOL.UME 11. A HANDBOOK. PART 1. LOG1CAL RI1-ETC(U)
APR 80 S S TAU, J S COLLOFELLO, C HSIEH F3O6276rC-0397

NCLASSIFIED RADC-TR-80-138-VOL-2 NLCLASSlIFIEDh ..

I111L 1111 .

Igo 11112=

.11IL25 11111 1.6

MICROCOPY RESOLUTION TEST CHART

-77

DTIC
40 ELEOTE.

IL 8

AN coo""3

-IISV VW .ff".., =T.i..;

*41,be role "K 'toVw eftei pUt 1410utl

ipt-013#.1, Vol 11 "(of tbt.4 *a~be ~vwd~ s pte

ftOCO F'. IUOENO

wU0A)" C. AI1W", colt USAF
chief, Intorat ot Science* Division

FOR in COMMUDWr

* Acting Chief , Plans OffiLe

E os adt Wsha changed or if you wish to be removed from the RAWO
IS14v i, o0 If the adram.. is'no Longer mloyed by your orsuisa-.

%bs ~ess utSfy IMD (ISOU), OrIff is. AFB NY 13441. This wll, assist
A 3 iAs utMtaftbw. & current asilng lst.

vaSt tt ftis oy. 'Ietaft or destroy.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DOttEntered)_REOTDOUETTINPG READ INSTRUCTIONS

.BEFORE COLI OFFIC N D DRRT NUMBER 12. GOVT ACCESSION NO. 3.RCETSCATALOG NUMBER

Rom Ai Deelomet Cnte (IIS)// apr c ca8

Gif fQnTFNN 34

Ja8es 138 Vol oII ifreon ,S T CS o
thunf- hu-. a..6vWLe&hX

Samen e - Fna ecniaLIe

IESNA. D ECL IF A T N-OIn N A S K.DrTON TartNS oial Reprt e of Ag b o Hu A

Apredri pubicne ase;g dismptribuin unlimite.2F /]
1 IIUI O STTMN ao thei 6.trc entTRred OR GRANT NUMfBifErRt(rm&e)t

S ame s o l f e l
IS. g - h u SU P LE eNT R N O TESD R S 0 P O R M E EM N ,P OJ C .T S

Evanston IL, 60201 558 27

RACoect Denelper: ccoe F.IS luorno" (ISIS) [

I1. CONTROLLING O FFICE N AME AND ADDRESSn...b..o.n...

Rstics AirDev lend ienterode error) flows.

sGrlffiss AFB NY 13441 t3a NUme .EPpt FnaGES31
14. MONITORId. InJ4 V '--& A DRESS(If difretom C trolltn Ofice) IS. SECURITY CLASS. (of thda port)

Same 7 E UNCLASSIFIED

IS. DECL A FI C ATION GOWNGRADING
N/ASCHEDUL

F

16. DISTRIBUTION ST'ATEMENT (of this Re'port)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the *bsftrct entered in Block Z It different from Repo
0

~Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Rocco F. Iuorno (ISIS)

19. KEY WORDS (Continue an revtee side it nCelear end identify by block number)Sof tware maintenance process, logical ripple effect analysis, technique,
~handbook, lexical analysis and tracing, block and module error character-

istics, intramodule and intermodule error flows.

A0. ABSTRACT (Continue on reverse side It necessary and Identify by block number)

S This handbook consists of two parts on ripple effect analysis for large-
scale software maintenance. In Part 1, a ripple effect analysis tech-
nique for software maintenance from the logical or functional perspective
is presented. In a separate volume, the Part II of the handbook, a ripple
effect analysis technique for software maintenance from the performance
perspective is presented. The purpose of this handbook is to present r
ripple effect analysis techniques to assist software maintenance person-

D jm,R 1473 EDITION OF I NOV 65S IS OBS-OLEToE'd / /
D . UNCLASSIFIED (otd

SECURITY CLASSIFICATION OF T141s PACE ('-,- DOS Bfnto

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE('"m Dale EaReWtO

Item 20 (Cont'd)

nel to do a better job in large-scale software maintenance. The

material presented in this handbook is organized in three levels. At
the first level, the software maintenance process is described and the
need for effective ripple effect analysis techniques for large-scale
software maintenance is given. The capabilities and restrictions of
the logical ripple effect analysis technique, as well as how this tech-
nique is interfaced with the user, are presented. At the second level,
the logical ripple effect analysis technique is outlined in two phases:
the lexical analysis phase and the tracing phase. At the third level,
the steps of the logical ripple effect analysis technique are given
in detail. However, the detailed theory behind this technique is not
presented in this handbook, but contained in other reports.

UNCLASSIFIED
SaCURITY CLASSIPICATION OF I-,- PAGathfN DONl Enfee#)

Table of Contents

Page

List of Figures ii

1.0 INTRODUCTION .*. I1

2.0 CAPABILITIES AND RESTRICTIONS OF THE LOGICAL RIPPLE
EFFECT ANALYSIS TECHNIQUE...... 5

3.0 USER INTERFACE 6

4.0 OUTLINE OF LOGICAL RIPPLE EFFECT ANALYSIS TECHNIQUE 7

4.1 Lexical Analysis Phase. 9

4.1.1 Logical Characterization of the Program 9
4.1.2. Outline of the Procedure to Perform Lexical Analysis - - -. 11

4.2 Tracing Phase12

4.2.1 Logical Ripple Effect Tracing 12

4.2.2 Outline of the Procedure to Perform Ripple Effect Tracing . .. 14

5.0 DESCRIPTION OF EACH STEP OF THE TECHNIQUE.14

5.1 Description of Lexical Analysis Steps.. 14

5.1.1 Lexical Analysis Step 1 15

5.1.1.2 Pass 2o.. 16

5.1.2 Lexical Analysis Step 2. * 19

5.1.2.1 Derivation of Module Precedence Ordering 19
5.1.2.2 Derivation of Error Characteristics for a Module 20
5.1.2.3 Update of Block Error Characieristics 23

5.2 Description of Tracing Steps of Logical Ripple Effect
Analysis 24

5.2.1 Tracing Step 1 of Logical Ripple Effect Analysis24

5.2.2 Tracing Step 2 of Logical Ripple Effect Analysis 26
5.2.3 Tracing Step 3 of Logical Ripple Effect Analysis. 26

5.2.3.1 Intramodule Error Flow 26
5.2.3.2 Intermodule Error Flow 28

5.2.4 Tracing Step 4 of Logical Ripple Effect Analysis 32
5.2.5 Tracing Step 5 of Logical Ripple Effect Analysis33

6.0 REFERENCES 33

List of Figures

Page

Figure 1. A recent estimate of the life cycle cost for large-
scale software [91 2

Figure 2. A software maintenance process with the ripple effect
analysis techniques ... 0. *.. 3

Figure 3. Illustration of the inputs and outputs of the logical
ripple effect analysis technique5

Figure 4. User interface level of the logical ripple effect
analysis technique 8

1.0 Introduction

The amount of the maintenance effort in the life cycle of large-scale

software has been large and continuously increasing. Software maintenance is

a very broad activity that includes error corrections, enhancements of capa-

bilities, deletion of obsolete capabilities, and minor modifications in mis-

sion requirements [1-6]. Optimization is also a form of maintenance requiring

the modification of code within individual modules, and possibly the structure

of the complete system in order to improve its efficiency [7]. The software

life cycle has been analyzed to determine the relative magnitude of this main-

tenance activity with respect to other software development phases [8,9]. The

results of one study [9] are illustrated in Figure 1, and indicate that the

cost of maintenance is 67 of the total cost for the life cycle of large-scale

software. It is obvious that in order to reduce the high cost of software,

the most effective approach is to understand the nature of software mainte-

nance and develop effective maintenance techniques. This requires a clear

understanding of what is meant by the maintainability of a software system.

The maintainability of a software system can be defined as a measure of

the ease of making modifications to the software. In software, the effect of

a modification may not be local to the location of the modification, but may

also affect other portions of the system. There is a ripple effect from the

location of the modification to the other parts of the system that are

affected by the modification [1,10-12]. One aspect of this ripple effect is

logical in nature. It involves identifying program areas which require addi-

tional maintenance activity to insure that consistency with the initial change.

Another aspect of this ripple effect concerns the performance of the system.

It involves analyzing changes to one program area which may affect the per-

formance of other program areas. Ripple effect analysis techniques are needed

for analyzing this ripple effect from both a logical and a performance per-

spective. This is required since a large-scale program usually has both func-

tional and performance requirements. The ripple effect analysis techniques

needed are put into perspective within the maintenance process in Figure 2.

As illustrated, the techniques are applied after the maintenance personnel

have generated one or more maintenance proposals.

This handbook is divided into two parts with each part describing one of

the ripple effect analysis techniques. Part I describes the logical ripple

integration module test

72 8 code

design

3% specifications

3% requirements

maintenance 67%

Figure 1. A recent estimate of the life cycle
cost for large-scale software [91

2

Determine
Maintenance
Objective

Understand
Program

Figre . sotwaeMaintenance poeswt

thpe ferpl et analpsi tfecqe

Analyis Anlysi

effect analysis technique. Part 11 describes the performance ripple effect

analysis technique [13]. Part I is completely independent of Part 11 since

logical ripple effect analysis can be applied without performance ripple

effect analysis. Part 11 references Part I since performance ripple effect

analysis should be utilized in conjunction with logical ripple effect analy-

Sis.

The logical ripple effect analysis technique presented in this part of

the handbook can be a powerful tool for maintenance personnel. Figure 3

expands the logical ripple effect analysis box in Figure 2 to illustrate the

inputs and outputs of the technique. The outputs of the technique can help

maintenance personnel understand the scope of effect of their changes on the

program. They can also aid them in determining which parts of the program

must be checked for consistency. The net results of applying the logical

ripple effect analysis technique are:

* Smoother implementation of program modifications

* Reduction of program errors introduced in the program
due to modifications

* Reduction of program structure degradation as a consequence
of program modification due to an increased understanding
of the implications of the modification

*Decrease of the growth rate of program complexity due to
program modification

*Extension of overall program's operating life

Another significant product of the logical ripple effect analysis techni-

que is the computation of the complexity of a proposed program modification.

One such figure ha's been proposed which reflects the amount of work involved

in performing maintenance and, thus, provides a standard on which comparisons

of modifications can be made [1]. However, further research is required for

estimating such a figure.

4

Sourc codeModules and blocks
Sourcecodeay be affected by

Logicl Rip~lethe modification

Proposed Figure for the
modi fication complexity of the

program modification

Figure 3. illustration of the inputs and outputs
of the logical ripple effect analysis
technique

The objective of Part I of this handbook is to describe the logical

ripple effect analysis technique in a clear and concise manner. Section 2

describes the capabilities and restrictions of the technique. Section 3 pre-

sents the user level interface to this technique as it is perceived to be when

fully implemented. Section 4 outlines the required processing necessary to

accomplish the functions described in Section 3. The remainder of the sections

deal with a description of each of the processing steps. This handbook does

not contain implementation details or verification of the algorithms described.

Detailed information of this type is discussed in other reports [12,14,15].

2.0 Capabilities and Restrictions of the Logical Ripple Effect Analysis

Technique

The logical ripple effect analysis technique described in this part of

the handbook is language independent and applicable to existing programs as

well as newly implemented programs incorporating state-of-the-art design tech-

niques. The technique does not provide maintenance personnel with proposals

for modifying the program. Instead, the technique is applied after the

5

maintenance personnel have generated a number of possible maintenance propo-

sals.

The current version of the logical ripple effect analysis technique also

makes the following assumptions about the program to be analyzed.

1. The program does not contain any recursive procedures.

In the current version of the logical ripple effect analysis technique,

it is assumed that the module invocation graph is acyclic. Hence, recursion

is not allowed. Programming languages such as JOVIAL, FORTRAN, COBOL, do not

have recursion. Nevertheless, we will eliminate this restriction in our

future research.

2. Statement names and module names cannot be passed between modules.

A module is defined to be a separately invokable piece of the software

system having single entry and single exit points. If statement names and

module names can be passed between modules, then the invocated module may have

multiple entry or multiple exit points. However, current programming practices

try to avoid this feature because it leads to bad programming style. Thus, it

can be justified that statement names and module names should not be passed

between modules.

Another limitation of the current version of the logical ripple effect

analysis technique is that the technique is oriented towards tracing data flow.

Thus, the technique provides limited information concerning logical ripple

effect if the initial modification changes only the control flow of the pro-

gram. Future research will be focused on covering the ripple effect analysis

due to initial modifications on control flow.

3.0 User Interface

The success of any software technique is dependent upon its ease of use.

The technique must be simple to understand and apply to the problem. This

implies a high degree of automation in which the user interfaces with the

technique at a very high level, and the technique is transparent to the user

on how it operates.

The logical ripple effect analysis technique has been developed with these

objectives. When the technique is fully auitomated, it is very easily applied

6

to the problem. Although the technique is very sophisticated, the maintenance

personnel applying the technique need only be concerned with its outpujt. The

logical ripple effect analysis technique is applied in the following three

simple steps which are illustrated in Figure 4.

Step 1: Maintenance personnel utilize a change management system (CMS) to

modify the program. The CMS consists of a text editor and a data base. The

CM records all of the changes in the program automatically in the data base.

Thus, a record of the maintenance activity is created without special assis-

tance from the maintenance personnel.

Step 2: After the modification of the program is complete, the maintenance

personnel execute the lexical analysis package of the logical ripple effect

analysis technique.

Step 3: Upon completion of the lexical analysis step, the maintenance person-

nel execute the tracing package of the logical ripple effect analysis techni-

que. The tracing package utilizes the data base of program changes created by

the CNS and maps these changes into the characterization of the program created

by the lexical analysis step. It then traces logical ripple effect throughout

the program. The output of the tracing package is a display of the code of

the blocks affected by logical ripple effect. Another significant output of

the tracing stage which is still undergoing research is the computation of a

figure for the complexity of the proposed modification. This figure will

reflect the amount of programmer' s effort required to incorporate a particular

program modification and take care of all its logical ripple effect. This

figure can be used as a basis upon which various program modifications can be

evaluated in terms of programmer's effort.

The logical ripple effect analysis technique, thus, provides maintenance

personnel with valuable information about the maintenance activity without

interfering with the maintenance process itself or requiring additional input

from the maintenance personnel.

4.0 Outline of Logical Ripple Effect Analysis Technique

In this section, we will outline the processing steps involved with the

lexical analysis and tracing phases of the logical ripple effect technique.

0
"14

4) .4 1 0 "
Aj Aj= 64 44

to 4 44 0 .r
cc -4.4 4

44)0

*0 0 s

rz~14

' 1 0

0 a,
4) I

q14 u4 aI

00 to 4
F-4 0 00

.1"4

-*,I I I

to w0 00
P
4

r4 V- a 1.44

X Id 4.14
4) w

r- 4) -W
to 00 0b

0 P '

0

V w~

4) 0

0 *0Ad

4.1 Lexical Analysis Phase

The first phase of the logical ripple effect analysis technique is the

lexical analysis phase. In this phase, the program is analyzed with respect

to the proposed modification and a characterization of the program is compiled

and saved in a data base. The characterization of the program contains infor-

mation necessary for tracing logical ripple effect. A description of the

logical information needed for this characterization will now be presented.

4.1.1 Logical Characterization of the Program

The main purpose of the logical ripple effect analysis is to aid the

maintenance personnel to better understand the scope of effect of his changes

on the software system and identify program areas which must be checked to

insure their logical consistency with the initial changes. To accomplish this,

a modular large-scale software system is modeled by the set of modules and the

interdependency between the modules. A program module is defined to be a

separately invokable piece of the software system having single entry and

single exit points. If a program module does not satisfy the single entry and

single exit condition, it can easily be modified to satisfy this condition by

using reference flags to refer to different entry points and different exit

points. Thus, a module can correspond to a SUBROUTINE or PROCEDURE. The

interdependencies between the modules can be represented by a directed graph,

the invocation graph,?9, where each node in,?9 corresponds to one and only one

module, and each edge denotes that the module corresponding to the tail of the

edge invokes the module corresponding to the head of the edge at least once.

A program module is further partitioned into program blocks to reduce its
complexity and enhance the information on the program structure.

A program block is a maximal sequence of computer statements having the

property that each time when any statement in the sequence is executed, all are

executed; except under the condition that the execution flow is transferred to

another module, or information is input from or output onto a file, or a looping

condition is defined in a DO type statement. Whien a module invocation is

encountered, a sequence of three blocks may be assigned for this module invo-

cation. An input statement would initiate a new block which contains the

input statement. An output statement would terminate the current block which

contains the output statement. A DO type statement which defines a looping

9

condition constitutes a block itself. However, each program block has one

single entry point and one single exit point.

A program module is modeled by the program graph associated with this

module. A program graph is a directed graph where each node represents one

and only one program block in the module and each edge represents the execu-

tion flow from the exit point of the tail node to the entry point of the head

node.

In order to trace the logical ripple effect, it is necessary to charac-

terize each block to reflect how potential errors can propagate within the

block. A data usage is a data item which is referenced without change in an

expression or part of an expression. A data definition is a data item whose

value is modified in an expression or part of an expression. A control defi-

nition is an item assigned to a control directive to reflect the control con-

dition, e.g. a control definition is assigned to an IF statement and the data

items in the predicate are said to define the control definition. The poten-

tial Propagator set for each block is defined to be the set of all usages in

the block which can propagate potential errors. The source capable set for

each block is defined to contain all definitions within this block which can

cause potential errors to exist within this block. A flow mappingt for each

block is defined to associate each element in the potential propagator set

with the elements in the source capable set such that potential errors can

propagate from the potential propagator to the source capable definitions.

The source capable set, the potential propagator set, and the flow mapping of

a block together constitute the block's error characteristics.

Tracing of logical ripple effect also requires the characterization of

each module to model the potential error behavior between the module and its

surrounding environment. This characterization is referred to as the module's

error characteristics. The error characteristics for a module is represented

by the module level potential propagator set, the module level source capable

set and the module level flow mapping. The elements in the module level

Potential propagator set can cause potential errors to propagate within this

module. The elements in the module level source capable set represent poten-

tial errors which can flow from this module or remainvwithin the module. Themod-

ule level f low mapping represents how potential errors can propagate from the mod-

ule level potential propagators to the module level source capable definitions.

10

A module must have its error characteristics defined after *the error

characteristics of the modules that are invokable by this module have been

defined; othirwise, the error characteristics of the module cannot be com-
pletely specified. Thus, the order in which the module error characteristics

are derived for all the modules in the software system is very important. A.

precedence ordering among the modules is defined to be a partial ordering such

that if a module invokes another module, the former is assigned a higher pre-

cedence than that of the latter. Therefore, the error characteristics for all

modules should be defined starting from the module with lowest precedence, i.e.

a module that does not invoke any modules, and then proceeding to the modules

with higher precedences according to the precedence ordering.

Thus, lexical analysis to produce a logical characterization of the pro-

gram requires that for each module in the software system, the module's text

is statically scanned to produce a program graph based on program blocks. The

error flow properties of each program block represented by the potential propa-

gator set, the source capable set and the flow mapping are also characterized.

In addition, the module invocation graph is constructed to denote that a block

in a module invokes another module. This process is dependent of the high

level language in which the software system being analyzed is written. This

process is referred to as Text-Level Lexical Analysis and different Text

Analyzers have to be developed for different programming languages. A text is

defined to be an entity that is compiled independently. As an example, a text

may be a compool, a main program, or a subprogram in JOVIAL.

After all the texts in the software system have been processed by the

Text Analyzer, the precedence ordering among modules will be derived. Then

according to this precedence ordering, the module error characteristics for

each module will be derived. At the same time, the error characteristic sets

and flow mappings for those blocks which invoke some modules will be updated.

This process if referred to as the SYstem-Level Lexical Analysis and is inde-

pendent of the programming language in which the software system is written.

4.1.2 Outline of the Procedure to Perform Lexical Analysis

The processing steps involved with lexical analysis can be summarized as

follows:

Step 1: Perform Text-Level Lexical Analysis to produce a program graph based

on program blocks, compute the error flow properties of each program block,

and construct the invocation graph.

Step 2: Perform System-Level Lexical Analysis to derive the precedence order-

ing among modules, compute the module error characteristic sets, and update

the block error characteristic sets.

4.2 Tracing Phase

The second phase of the logical ripple effect analysis technique consists

of tracing the logical changes, i.e., the logical ripple effect which occurs as

a consequence of the maintenance changes. The input to the technique in this

phase includes all of the information about the program collected and stored

in a data base during the lexical analysis phase.

4.2.1 Logical.Ripple Effect Tracing

Tracing logical ripple effect is a very difficult problem and requires

identification of error sources which will be utilized as starting points for

the tracing. There are two types of error sources:

Primary error sources which are all the program definitions involved in the

initial modification. Inconsistency of these program definitions can propa-

gate from the primary error sources to other program areas.

Secondary error sources which are data or control definitions implicated

through the usage of primary error sources and must be examined to insure that

they are not inconsistent with the data items involved in the initial change.

The error sources that may flow from a block are represented by the propagation

error source set for the block.

The algorithm to compute logical ripple effect operates upon each module

characterization to trace error sources from their points of definition to

their exit points. The algorithm is initialized with a set of modules and

their primary error sources involved in the initial change. For each module

initially involved in the modification, the algorithm traces the ir'LLdffoduie

flow of potential errors from the primary error sources through the various

program blocks. When the flow of error sources stabilizes, the algorithm

applies a block identification criterion to determine which blocks within the

12

module must be examined to insure that they are not logically inconsistent

with the initial change. The block identification criterion is used to dis-

tinguish between blocks which are affected by the error flow and those which

are not. A block is affected by error flow and, thus, may require further

maintenance if the intersection of the block's propagation error source set and

its source capable set is not empty. After the block identification is com-

plete, a propagation criterion is applied to this module to define those error

sources which flow from this module to those modules invoked by this module,

and to modules which invoke this module. Error flow across module boundaries

constitutes intermodule error flow. For each module affected by intermodule

error flow, the algorithm traces intramodule error flow in the same manner as

described above to determine the net effect that the propagated error sources

have on their respective modules. The algorithm is executed in this manner un-

til intermodule error flow stabilizes. An intermediate result obtained at the

point is the set of modules which are affected by the intermodule error flow

of error sources created by the primary error sources involved in the change.

Then, a logical ripple effect criterion is applied to each module affected by

intermodule error flow to determine if the module requires additional mainte-

nance activity. The logical ripple effect criterion consists of examining the

intersection of the propagation error source set and the source capable set for

every block in the module. If the intersection is empty for each block in the

module which is not specified for a module invocation, (i.e. the module is not

affected by logical ripple effect because it does not cause inconsistency with-

in itself), then the module requires no further maintenance activity. However,

if there exists at least one block such that the intersection of the propaga-

tion error source set and the source capable set is not empty, then the module

is affected by logical ripple effect.

A block elimination criterion is also applied to each module affected by

intermodule error flow to identify the program blocks and their error sources

which require additional maintenance. The block elimination criterion dis-

tinguishes between those blocks which are affected by the logical ripple effect

and those which only contribute to the error flow. If a module is not affected

by the logical ripple effect, then all blocks in the module and all blocks

assigned for invocations to this module require no further maintenance activity

since the error sources do not disturb this module's consistency.

13

4.2.2 outline of the Procedure to Perform Ripple Effect Tracing

In this section, the processing steps for tracing logical ripple effect

will be presented in the required order.

Step 1: Utilizing the change management system data base and the characteriza-

tion of the program produced during lexical analysis, identify the set of

blocks and their primary error sources initially involved in the change for

each module in the program.

Step 2: Form a set Vtcomposed of modules initially involved in the change.

Step 3: Compute the error flow of set fi. Let the set of modules affected by

the error flow be 74 and the set of blocks and their error sources within each

module Ili which contributes to error flow be L. F

Step 4: Apply the logical ripple effect criterion to each element in Vt.Let

all modules in Vt which require additional maintenance due to the logical

ripple effect criterion form the set e

Step 5: Apply the block elimination criterion to each element in Vt.Let all
blocks and their error sources within MH which require additional maintenance

Ractivity form the set L .The maintenance personnel must check all of the

blocks in L Rfor each module in et to insure that they are consistent with the

initial change.

5.0 Description of Each Step of the Technique

In this section, a description of each of the steps involved in the lexi-

cal analysis and tracing phases of the logical ripple effect analysis will be

* provided. The description will be informal and concise. The processing steps

will be describ~ed at a level which is language independent. Informal algo-

rithms and approaches used in these steps will also be presented, but the

actual implementation is language dependent and hence, omitted.

5.1 Description of Lexical Analysis Steps

In this section, a description will be presented for each of the lexical

analysis steps outlined in Section 4. Section 5.2 will contain a description

of each of the steps in the tracing phase which has also been outlined in

Section 4.

14

5.1.1 Lexical Analysis Step 1

This step performs the Text-Level Lexical Analysis on each text-to derive

the program graphs, module invocation graph, block error characteristics, etc.

Since most programming languages allow several names to refer to the same

memory location and also several memory locations referred by the same name,

we have to resolve these address conflicts first in order to correctly trace

the error flow within the software system. Therefore, this process is further

decomposed into two passes.

5.1.1.1 Pass I

The Pass 1 scans the text and performs the following main functions: to

establish symbol tables and alias relations, to resolve address conflicts and

to identify the global and passed parameter sets of modules defined within this

text.

There are two types of address conflicts which must be resolved. One is

called symbolic aliasing which arises when several names refer to the same

memory location. The other is called the address aliasing which occurs when

several memory locations may be referred by the same name.

Most programming languages permit the programmer to declare data items

with the same name, but different scopes of effect. This capability can intro-

duce address aliasing. One way to resolve this problem is to keep track of the

scopes of effect for all data names by appropriate symbol tables or stacks,

such as a common symbol table or program symbol stack. When a data name is

referenced in the program, the data item with the scope of effect on this

reference can be resolved from the symbol tables or stacks following the name

resolution rules associated with the language. Then, the reference is relabel-

led to reflect which data item has the applicable scope of effect, e.g. by

prefixing the name with a prefix which denotes the module where the data item

having the scope of effect for the reference was declared.

Some programming languages allow the user to declare several data names

for the same data item. The EQUIVALENCE statement in FORTRAN is an example.

This capability can introduce one form of symbolic aliasing. This kind of

symbolic aliases can be identified by seeking out the syntactic constructs

used by each language to define the alias relation. Once identified, this

kind of symbolic aliasing can be resolved by substituting only one' element in

15

the alias grouping for all other elements in the group throughout the scope of

effect of the aliases.

Thus, in Pass 1, the symbol tables and alias relations must be estab-

lished and used to resolve the address conflicts. In addition, the global and

passed parameter sets of each module defined within the text can be identified

as a by-product of the name resolution. The formal parameters, if there are

any, appearing in the module declaration in their prefixed form are put into

the passed parameter set of the module. The data items referenced within the

module which have scopes of effect over the module are in the proper form

which can reflect the respective scopes of effect of the data items and put

into the global parameter set of the module.

A temporary file is written by Pass 1 as the card image of the text

except that all aliases have been resolved and relabelled.

5.1.1.2 Pass 2

The Pass 2 scans the temporary file written by Pass 1 and performs the

following main functions: to derive the program graphs for modules defined in

the text, to identify blocks and their error characteristics, and to derive

the module invocation graph. Note that Pass 2 can be skipped for texts which

contain no executable statements and are used merely for declaration purpose,

such as compools in JOVIAL.

For each programming language, a set of block segmentation conditions

must be identified according to the syntactic construct of the language.

These block segmentation conditions should identify all control flow changes

other than those in sequential control flow, e.g. conditional statements,

jumps, loops, etc., and some special conditions for error flow analysis, e.g.
module invocation, data declaration, input and output statements. Associated

with the block segmentation conditions are the predecessor-successor identifi-

cation conditions which are used to build the predecessor-successor relation-

ship among the blocks identified by the block segmentation conditions. As an

example, when an unconditional GOTO statement which branches to a labelled

statement is encountered, the block segmentation conditions should identify

this and terminate the current block while the predecessor-successor identifi-

cation conditions should specify that the current block is a predecessor of

the block which contains the statement bearing the label referred by the GOTO

16

statement. The block segmentation conditions and predecessor-successor identi-

fication conditions partition a module into program blocks and derive the pro-

gram graph of-the module in terms of the blocks and the predecessor-successor

relationship among the blocks within the module.

In order to identify the error characteristics of blocks, the schemes to

identify the usages and definitions from all types of statements, intrinsic

functions and procedures must be identified according to the syntactic con-

struct of the language. As an example, the simple data item appearing on the

left-hand side of an assignment operator will be identified as a definition,

and the data item(s) appearing on the right-hand side of the assignment opera-

tor will be identified as usage(s).

A block's error characteristics are represented by the potential propaga-

tor set, the source capable set, and the flow mapping of the block. A block

error characteristics identification scheme has been developed to process the

usages and definitions identified within a block to determine how they should

be added to the potential propagator set and source capable set, respectively,

and how the flow mapping should be constructed. A discussion of the scheme

can be found in (12].
Pass 2 scans through the temporary file written by Pass 1. Once a new

module scope is entered, an entry block with empty error charactistics will be

specified for the module. When one or more of the block segmentation condi-

tions are satisfied, the current block will be terminated and a new block is

built with appropriate predecessor-successor relationship specified by the

respective predecessor-successor identification conditions. The usages and

definitions in a block are identified by the schemes from the statements,

intrinsic functions and procedures appearing in the block. The usages and

definitions are processed by the block error characteristics identification

scheme to construct the potential propagator set, the source capable set, and

the flow mapping of the block. At the end of the module scope, an exit block

with empty error characteristics is specified for the module. The program

graphs, the blocks and their respective error characteristics can thus be

derived. Note that the information to indicate the entry points of blocks

should be inserted and written with the temporary file which contains the text

after resolving address conflicts on an output file. Thus, the output file

can be scanned to identify the primary error sources, the blocks and modules

17

involved in the initial changes.

When a module invocation is recognized by its syntactic construct or by

name resolution, a sequence of three blocks may be assigned in the invoking

module to establish the potential error flow between the invoking and the

invoked modules. The first block in the sequence is used to construct the

potential error flow between the actual input parameters and their correspond-

ing formal input parameters. The second block in the sequence is referred to

as a module invocation block and used to represent the potential error proper-

ties of the invoked module. The third block in the sequence is used to con-

struct the potential error flow between the actual output parameters and their

corresponding formal output parameters.

The two blocks used to construct the error flow between actual and formal

parameters are required because the parameters passed between modules can

introduce another form of symbolic aliasing. Furthermore, as far as the formal

and actual parameters are concerned, the invoked module's error characteristics

are expressed in terms of the formal parameters, while the local blocks' error

characteristics in the invoking module are expressed in terms of the actual

parameters. Thus, these two blocks are required to correctly trace the error

flow between modules and preserve the invoking module's local block character-

istics. Certainly, if the invoked module has no formal parameters, these two
blocks can be omitted. Similarly, if the invoked module is a function, the

block which is used to construct the error flow between output parameters can

be omitted.

The block error characteristics of the blocks in the sequence assigned for

a module invocation are initialized as empty in Pass 2 and will be specified

later in the System-Level Lexical Analysis step after the invoked module's

error characteristics have been defined. The information about the blocks

assigned for the module invocation, the invoking module and the invoked module

for each module invocation is stored in the module invocation table which will

be used later in the System-Level Lexical Analysis step to update the block

error characteristics of the blocks assigned for module invocations and in the

tracing step to compute the logical ripple effect. Furthermore, the actual

parameter list appeared in each module invocation is stored in conjunction with

the module invocation.

18

For each module invocation, the invoking module is also specified as an

immediate predecessor of the invoked module in the module invocation graph

which will be used later in the System-Level Lexical Analysis step to derive

the module precedence ordering and further in the tracing step to compute the

logical ripple effect.

5.1.2 Lexical Analysis Step 2

At the beginning of this step the text-level lexical analysis has already

produced a program graph based on program blocks, computed the error flow

properties of each program block, and constructed the invocation graph. This

step performs system-level lexical analysis to derive the precedence ordering

among modules, compute the module error characteristic sets, and update the

block error characteristic sets.

5.1.2.1 Derivation of Module Precedence Ordering

The module precedence ordering is used to determine the order in which

the module error characteristics for all modules in the program are derived.

It is a partial ordering and has a one-to-one correspondence with modules in

the program. If a module invokes another module, then the former should be

assigned a higher precedence than that of the latter.

The module precedence ordering can be derived from the module invocation

graph which was created in the Text-Level Lexical Analysis stage. Recall that

the module invocation graph is completely characterized by a set, where each

element in the set consists of a module and the set of modules invoked by this

module. The module precedence ordering is represented by a set where each

element consists of a module and its precedence.

The module precedence ordering can be derived by the following algorithm:

Step 1: Initialization

Construct a module list to contain all the ;nodules in the program. Ini-

tialize the module precedence ordering to be an empty set. Initialize a tem-

porary module list to be empty. Finally, set the precedence counter to be

zero.

Step 2: Ordering and Selection

For each module in the module list, search the module invocation graph to

19

determine if the set of immediate successors of this module is empty. If it

is empty, then increment the precedence counter, add the module and the current

value of the precedence counter into the module precedence ordering set, delete

this module from the module list, and finally add the module into the temporary

module list.

Step 3: Termination

If the module list is empty, i.e. all the modules in the program have

been processed, then terminate the program.

Step 4: Selection

Select a module from the temporary module list and then delete it from

the list.

Step 5.: Deletion

For each module contained in the module list, search the set of immediate

successors of the module to determine If the set contains the module selected

from the temporary module list. If it does, then delete the module selected

in Step 4 from the set of immediate successors of the module.

Step 6: Repetition

If the temporary module list becomes empty (i.e. all the modules which

were assigned precedences in Step 2 have been deleted from the sets of immedi-

ate successors of the modules which invoke these modules), then go to Step 2

to process the modules whose immediate successors have been assigned prece-

dences; otherwise, go to Step 4 to process the next module in the temporary

module list.

5.1.2.2 Derivation of Error Characteristics for a Module

The module's error characteristics are used to model the potential error

behavior between the module and its surrounding environment. The module's

error characteristics are represented by the module level potential propagator

set, the module level source capable set, and the module level flow mapping.

The elements in the module level potential propagator set can cause potential

errors to propagate within this module. The elements in the module level

source capable set represent potential errors which can flow from this module

or remain within the module. The module level flow mapping represents how

potential errors can propagate from the module level potential propagators to

the module level source capable definitions.

20

The module can only interface with its surrounding environment via its

parameter list. The elements in a module's parameter list may have passed

attributes or global attributes. The passed and global parameters were iden-

tified and stored in the passed parameter set and global parameter set,

respectively, for the module during the Text-Level Lexical Analysis.

The module's error characteristics can be algorithmically derived in 8

steps:

Step 1: Augment the global parameter set of the module.

The global parameter set of the module is augmented to contain all aug-

mented global parameter sets of the modules which are immediate successors of

this module. Because a global variable may not be used in the module but may

be used in a module invoked by the module, the global variable must be added

to the parameter list of the module to preserve the local error character-

istics of the module. The parameter list of the module is augmented too by

taking the union of passed parameter set and the augmented global parameter

set of the module.

Step 2: Calculate the set of natural source capable definitions.

The elements in the set of natural source capable definitions represent

the potential error sources which can flow from this module back to an invok-

ing module. The intersection of the module's parameter list and the union of

all source capable sets for the blocks in the module defines the natural

source capable set.

Step 3: Calculate the potential propagator candidate set.

The elements in the potential propagator candidate set represent the ele-

ments in the module's parameter list which are suspected of propagating poten-

tial errors into the module. The intersection of the module's parameter list

and the union of all potential propagator sets for the blocks in the module

defines the potential propagator candidate set.

Step 4: Calculate the natural potential propagator set and the pseudo poten-

tial propagator set.

The elements in the natural potential propagator set represent the ele-

ments in the module's parameter list which can cause potential errors to exist

within the module and flow out of the module. The elements in the pseudo

potential propagator set represent the elements in the module's"parameter list

21

which can cause potential errors to exist and remain within the module. A

potential propagator identification function is used to examine each element

in the potential propagator candidate set to determine if it can propagate

potential errors into the module. The potential propagator identification

function treats the potential propagator candidate as a primary error source

and makes it the only member of the propagation error source set for the entry

node of the module. Then, the potential propagator identification function i
traces the error flow within the module using the intramodule error flow algo-

rithm. Finally, the propagation error source set for the exit node of the

module is examined. Suppose that the set is not empty, i.e. the potential

propagator candidate can propagate potential errors to the elements in the set.

Then, the intersection of the natural source capable set and the propagation

err'or source set for the exit block of the module is examined. If the inter-

section is not empty, the potential propagator candidate can propagate poten-

tial errors to the elements in the intersection which can flow out of the

module and hence the potential propagator candidate is added into the natural

potential propagator set. Otherwise, i.e. the intersection is empty, all the

error sources created by the potential propagator candidate remain within the

module and hence the potential propagator candidate is added into the pseudo

potential propagator set.

Step 5: Calculate the module level potential propagator set.

The module level potential propagator set is defined A, the set of para-

meters which can cause potential errors to exist within the module. The union

of the natural potential propagator set and the pseudo potential propagator

set defines the module level potential propagator set.

Step 6: Calculate the pseudo source capable set.

A unique pseudo source capable definition is defined for each element in

the pseudo potential propagator set to represent the error sources which are

created by the pseudo potential propagator and remain within the module. The

existence of the pseudo source capable set is required for preservation of the

invoking module's local block error characteristics as expressed by the source

capable set and propagation error so'urce set for the local block. Preservation

of these error characteristics insures that intramodule error flow algorithm

will correctly identify those local blocks which are affected by a modification
and invoke this module. Elements in the pseudo source capable set can be

22

arbitrarily defined in such a manner that they will not create any erroneous

secondary error sources in the invoking module.

Step 7: Calculate the module level source capable set.

The module level source capable set consists of elements in the natural

source capable set and the elements in the pseudo source capable set.

Step 8: Identify the module level flow mapping.

The module level flow mapping maps each element in the module level poten-

tial propagator set to the elements in the module level source capable set

which may be affected by the potential propagator. The elements in the natural

potential propagator set are mapped to the respective elements in the inter-

section of the natural source capable set and the propagation error source set

for the exit node of the module as identified by the potential propagator

identification function. The elements in the pseudo potential propagator set

are mapped to the respective pseudo source capable definitions identified in

Step 6.

Note that the module error characteristics for all modules in the software

system should be derived according to the module precedence ordering identified

in the previous section and starting from the module which has the lowest pre-

cedence.

5.1.2.3 Update of Block Error Characteristics

Recall that in Pass 2 of the Text-Level Lexical Analysis step, a sequence

of blocks is assigned for each module invocation and the error characteristic

sets for the blocks in the sequence are specified to be empty. Now, it is

necessary to update the block error characteristic sets for these blocks. For

each module invocation, the block error characteristic sets for the module

invocation block in the invoking module are updated with the respective module

error characteristics of the invoked module. That is, we assign the invoked

module's module level potential propagator set, module level source capable set

and the module level flow mapping to the potential propagator set, source

capable set and flow mapping, respectively, for the module invocation block in

the invoking module. This can easily be done in an implementation, by changing

the pointers linking the blocks to the block error characteristics. The block

error characteristic sets for the block which is used to construc.t the poten-

tial error flow between input parameters can be specified by treating the

23

input actual parameters as potential propagators which can affect the corre-

sponding input formal parameters. Similarly, the block error characteristic

sets for the block which is used to construct the potential error flow between

output parameters can be specified by treating the output formal parameters as

potential propagators which can affect the corresponding output actual para-

meters. A formal parameter is identified to be an input formal parameter if

it is an element in the module level potential propagator set. A formal para-

meter is identified to be an output parameter if it is an element in the

natural source capable set for the module. The correspondence between formal

and actual parameters can be seeked out by examining the formal parameter list

of the invoked module and the actual parameter list which was stored in con-

junction with this module invocation during the Pass 2 of the Text-Level Lexi-

cal Analysis step.

5.2 Description of Tracing Steps of Logical Ripple Effect Analysis

In this section, a description will be presented for each of the tracing

steps of the logical ripple effect analysis outlined in Section 4.

5.2.1 Tracing Step 1 of Logical Ripple Effect Analysis

In this step, the set of blocks and their primary error sources involved

in the change is identified for each module in the program.

A primary error source is defined to be a data or control definition which

is directly affected or implicated by the initial modification. A directly

affected primary error source is a definition whose value or control condition

associated with it was directly changed by the initial modification. Impli-

cated primary error sources are required because our technique starts tracing

the logical ripple effect from the immediate successor blocks of the blocks

which are involved in the initial modification and hence the maintenance pro-

grammer has to identify the definitions affected by the intra-block error flow

within the primary error sources blocks. A definition in a primary error

sources block is implicated as a primary error source if it is defined by

direct or indirect usages of some directly affected primary error sources of

the block. Note that, after a definition was identified as a primary error

source, if it is redefined in the block without usages of any affected data

items, then the definition can no longer propagate potential errors to other

24

blocks) and hence should be removed from the set of primary error sources of

the block. From now on, we will assume that the implication process is always

carried out by the maintenance personnel.

Another type of complication arises when the control flow is changed due

to deletion of code. Since our technique is based on the potential error

properties of the modified program, some potential errors may not be traceable

due to the change in control flow. In order to solve this problem, the main-

tenance personnel has to specify the deleted definitions as directly affected

primary error sources for the blocks in the modified program, in which the

deleted code could transfer execution flow. These blocks of the modified

program should be specified as primary error sources blocks. In the following

discussion, it is also assumed that this type of complication is always

resolved by the maintenance personnel in case of deletion of code.

Based on the above discussion, our main emphasis here will be on how to

identify the directly affected primary error sources due to a program modifi-

cation. Note that a change, insertion, or deletion of a module invocation

requires special care. Let us consider the following modifications:

*Suppose that the data items used to define a control condition were

changed, e.g. a loop termination condition was modified. Then, the

control definition associated with this control condition is specified

as a directly affected primary error source of the block, where the

control definition is assigned.

*Suppose that a data definition was changed, added, or deleted in a

block. Then, the definition is specified as a directly affected pri-

mary error source of the block.

*Suppose that an actual parameter x was replaced by y in a module invo-

cation. If the corresponding formal parameter f is an input parameter,

then f is specified as a primary error source of the input parameter

mappings block associated with this module invocation. If f is an out-

pui parameter, then x and y both are specified as primary error sources

of the output parameter mappings block.

*Suppose that a module invocation which invokes a newly added or an

existing module was inserted into the program. Then, the invoked

',odule's natural source capable definitions are specified' as primary

25

error sources of the module invocation block associated with this newly

added module invocation.

*Suppose that a module invocation which invokes Hwas deleted from a

module M_ Then, the directly affected primary error sources are H is

natural source capable definitions, except that the formal output para-

meters should be replaced by their corresponding actual parameters3

which appeared in the deleted module invocation.

5.2.2 Tracing Step 2 of Logical Ripple Effect Analysis

In this step, the set F4 composed of modules initially involved in the

change can be formed directly from the result obtained in the last stepI

sucsbokiitthntemdlisaddit(Tracing Step 1). That is, if a module contains at least one primary error

5.2.3 Tracing Step 3 of Logical Ripple Effect Analysis

In this step, the error flow within the program is traced from the points

of definition to the exit points of the error sources. A tracing algorithm,

using the modules involved in the initial changes and identified in the last

step as a starting point, operates upon each module characterization to trace

the error flow. The intramodule and intermodule error flow models form the

basis of this tracing step.

5.2.3.1 Intramodule Error Flow

Intramodule error flow emulates the error flow between blocks in a mod-

ule.j
The error sources which flow out of a block are represented by the propa-

gation error source set of the block. From the propagation error source set

of an immediate precedessor block, a tracing function is used to emulate the

error sources which may flow out of the block as a result of the incoming error

sources propagated from the immediate predecessor block. Obviously, the pri-

mary error sources identified in the block can flow out of the block. The

incoming error sources may implicate new secondary error sources in the block

or they may pass through the block. An incoming error source which is also a

potential propagator of the block can propagate errors to the elements in the

source capable set which are mapped by the potential propagator under the flow

mapping, i.e. to the source capable definitions which are defined in the block

26

by direct or indirect usages of the potential propagator. Thus, the new

secondary error sources implicated by the incoming error sources can be iden-

tified as elements in the source capable set which are mapped by the elements

in the intersection of the potential propagator set of the block and the propa-

gation error source set of the immediate predecessor block. An incoming error

source which is not redefined in the block can pass through the block. Hence,

the set of incoming error sources which just pass through the block can be

obtained by eliminating such incoming error sources which are also members of

the source capable set of the block, i.e. by deleting the intersection of the

source capable set of the block and the propagation error source set of the

immediate predecessor block from the propagation error source set of the

immediate predecessor block. Therefore, the tracing function emulates the

error sources which may flow out a block as the union of the primary error

sources identified in the block, the implicated new secondary error sources

and the incoming error sources propagated from the immediate predecessor block

and just passing through the block. The propagation error source set of a

block can be derived by the union of error sources obtained by applications

of the tracing function on the block for all immediate predecessors of the

block.

An algorithm, called the intramodule error flow algorithm, is used to

trace how the errors flow from the primary error sources blocks to the blocks

in the module. It applies the tracing function on a block-immediate successor

basis to propagate errors from the initial error sources blocks to all imedi-

ate successor blocks vi of S, and then to all immediate successor blocks of

V., etc. The tracing function is applied in this manner as long as new

secondary error sources are created. When the flow of error sources stabil-

izes, the algorithm applies a block identification criterion to determine

which blocks within the module are affected by the creation and propagation

of secondary error sources.

The intramodule error flow algorithm can be stated as follows:

Step 1: Initialization

Initialize all propagation error source sets of the blocks in the module

to containing no errors. Define a list which contains primary error sources

blocks and initialize the propagation error source sets of these blocks to

27

containing their respective primary e~ror sources.

Step 2: Branch

If the list becomes empty, i.e. th , error flow within the module has

stabilized, then go to Step 6 to perforn block identification.

Step 3: Selection

Select a block from the list and then delete it from the list.

Step 4: Propagation, Comparison and Update

For each immdiate successor of the block selected in Step 3, apply the

tracing function on it to produce the set of error sources which currently

flows out of it. The set of error sources is then examined to see if it is

contained in the current propagation error source set of the immnediate suc-

cessor block. If it is not, i.e. new secondary error sources have been impli-

cated b~y the error sources which currently flow out of the selected block,
then the immediate successor block is added into the list and the propagationI
error source set of the inmediate successor block is updated by the union of

the current propagation error source set and the set of error sources identi-

fied by the application of the tracing function.

Step 5: Repetition

Go to Step 2 to process all immediate successor blocks of a block which

will be selected from the list.

Step 6: Block Identification

The flow of error sources within the module has stabilized. Thus, the

block identification criterion is applied to each block in the module to see

if the block is affected by the creation or propagation of the error sources.

For each block, the intersection of the propagation error source set and the

source capable set is examined. If the intersection is empty, then the block

is not affected by the error flow because it is incapable of internally gener-

ating any secondary error source. Otherwise, the block is affected by the

error flow and the elements in the intersection represent the definitions in

the block which are affected by the error flow.

Step 7: Termination

Halt the program.

5.2.3.2 Intermodule Error Flow

The intermodule error flow emulates the flow of error sources across

28

module boundaries of the software system.

Two a priori conditions must exist before intermodule error flow can

occur: 1) there exist error sources which have the capability to propagate

between two modules, 2) there exists an enabled path for error sources to

propagate between two modules.

Error sources use communication paths (e.g. passed parameter list, shared

data) and these paths are enabled at the time of a module's invocation. The

error sources can flow in both directions between two modules. The error flow

from the invoking module to the invoked module is called downward intermodule

error flow, while the error flow from the invoked module back to the invoking

module is called upward intermodule error flow.

A downward intermodule error flow criterion is used to check if the

invoking module can propagate error sources to the invoked module. The inter-

section of the propagation error source set of the module invocation block in

the invoking module and the invoked module's module level source capable set

is examined. If the intersection is not empty, i.e. there exist error sources

resulting from the intramodule error flow in the invoked module, then the

invoked module is affected by the downward intermodule error flow and the

error sources which propagate from the invoking module to the invoked module

are referred to as the downward primary error sources of the invoked module.

The downward primary error sources of the invoked module can be identified by

taking the intersection of the invoked module's module level potential propa-

gator set and the union of error sources which flow out of the immediate pre-

decessor blocks of the module invocation block in the invoking module. The

downward primary error sources will be added to the propagation error source

set of the entry block in the invoked module, and used to identify secondary

error sources that flow within the invoked module.

The upward intermodule error flow criterion is used to check if the

invoked module can propagate error sources to the invoking module. The inter-

section of the propagation error source set of. the exit block in the invoked

module and the invoked module's natural source capable set is examined. If

the intersection is not empty, i.e. error sources can flow from the invoked

module as a direct result of the intramodule error flow in the invoked module,

then the invoking module is affected by the upward intermodule error flow and

'he intersection defines the upward primary error sources of the invoking

29

module. The upward primary error sources will be added to the propagation

error source set of the module invocation block in the invoking module, and

used to identify secondary error sources that flow within the invoking module.

Nge that the overall flow of error sources throughout the program cannot

be identified W'thout the knowledge of both upward and downward error flows.

The upward error flow cannot be identified without the knowledge of downward

error flow. Thus, the downward error flow from a module to the modules

invoked by the modie must be traced before the upward error flow from the

module to the modules which invoke the module can be traced.

An algorithm, called the intermodule error flow algorithm, is used to

trace the error flow within the software system. This algorithm can be infor-

mally stated as follows:

9tep 1: Initialization
&Form a set, M , to be equal to the set VZ which was derived in Tracing

Step 2. The set ?)& is used to record the set of modules potentially affected

by upward intermodule error flow. Initialize another set, ? , to be an empty

set. The set 74 is used to contain the modules affected by intermodule error

flow. For each module M in the program, the propagation error source set of

the entry block and the set L are initialized to be empty, where L consists

of the blocks in M affected by error flow and their associated error sources.

Step 2: Intermodule Error Flow Termination

If V & becomes empty, i.e. the intermodule error flow has stabilized,

then terminate. Now, the set contains all the modules affected by error

flow, aad the sets Li's of the modules in 7 contain the blocks affected by

error flow and their associated error sources. These sets will be used later
to compute the logical ripple effect.

Step 3: Termination of Downward Error Flow Calculation

If F4 becomes empty, i.e. the modules which influence intermodule error

flow have all been processed, then go to Step 7 to identify the upward inter-

module error flow on the modules in V?

Step 4: Module Selection

Select a module from and then delete it from . Let M denote the

selected module.

30

Step 5: Intramodule Error Flow Tracing

Initialize a list to contain the primary error sources blocks in M . For

each block in the list, initialize its propagation error source set to contain

the primary error sources in the block. Here the primary error sources may be

the error sources identified from the initial modification, the upward primary

error sources or the downward primary error sources. For the blocks in the

module which are not primary error sources blocks, initialize their propaga-

tion error source set to be empty.

Apply the tracing function on a block-immediate successor block basis to

trace the intramodule error flow within MP as described in the Intramodule

Error Flow Algorithm.

When the intramodule error flow in M stabilizes, apply the block identi-

fication criterion to blocks in M. and add the blocks affected by intramodule

error flow and their associated error sources into L . F[
Step 6: Application of Downward Intermodule Error Flow Criterion

For each block contained in Li. search the module invocation table to see

if the block is a module invocation block. If it is, calculate the set of

error sources which currently flow into the module invocation block from its

immediate predecessor blocks by taking the union of the propagation error

source sets of the immediate predecessor blocks. Then, check if the intersec-

tion of that set and the module level potential propagator set of the invoked

module properly contains the propagation error source set of the entry block

in the invoked module. If it does, i.e. new error sources flow into the

invoked module, then add the invoked module into) andS. Furthermore, the

entry block is added into the set of primary error sources blocks of the

invoked module, while the primary error sources set of the entry block is

updated by the union of the current propagation error source set of the entry

block and the intersection derived above.

After all blocks in L have been examined, go to Step 3 to continue cal-

culating the net effect on the modules in 4& and the modules invoked by these

modules.

Step 7: Application of Upward Intermodule Error Flow Criterion

For each module in 74 &, apply the upward intermodule error flow criterion.

Let M be a member of 71?. Calculate the intersection of the propagation error

31

source set of the exit block in MH and the natural source capable set of MH
This intersection defines the upward primary error sources of MHJ If the

intersection is empty, i.e. no error sources currently flow from Mte

examine another module in 7'. Otherwise, search the module invocation table

and add the modules which invoke MH into ? and M~ . Furthermore, for each

module which invokes Mi. add the blocks in the module which invoke H into the

set of primary error sources blocks of the module and update the sets of pri-
mary error sources of the blocks by the upward primary error sources of M

After all modules in T have been examined, assign F4? to 74 and go to

Step 2 to identify the net effect on modules currently in 74 & and the modules

invoked by members in 74 &

5.2.4 Tracing Step 4 of Logical Ripple Effect Analysis

In this step, the set of modules which are affected by logical ripple

effect, as denoted by e', is identified from M*?, which is the set of modules

affected by the error flow. Recall that was derived previously in Tracing

Step 3.

A module affected by error flow may not contribute to the logical ripple

effect if the error sources only pass through the module without disturbing

the consistency of the module. A logical ripple effect criterion is used to

check if a module is not only affected by error flow, but also by logical

ripple effect. For a module in 74 , if the intersection of the propagation

error source set and the source capable set is empty for every block in the

module which is not assigned for a module invocation, then the module is not

affected by logical ripple effect'because all error sources only pass through

the module to the modules invoked by the module. Otherwise, at least one

definition in the module is affected by error flow and the module is affected

by logical ripple effect and hence requires further maintenance activity.

In this step, eis first initialized to be empty. Then, the logical

ripple effect criterion is applied to each module in .If a module is iden-

tified as affected by logical ripple effect, then it is added into le1. After

all the modules in ,74 have been examined, the set e/ contains the set of

modules affected by logical ripple effect.

32

5.2.5 Tracing Step 5 of Logical Ripple Effect Analysis

In this step, the set of blocks and their error sources which are affected

by logical ripple effect is identified from the set of blocks and their error

sources which are affected by error flow. Recall that for each module M in

7 , the set of blocks in M and their error sources affected by error flow was

derived in Tracing Step 3 and denoted by L .

A block affected by error flow may not be affected by logical ripple

effect. A block elimination criterion is used to eliminate the blocks which

are not affected by logical ripple effect from the set of blocks which are

affected by error flow. If a module M in V? was identified in the last step

as not affected by logical ripple effect, then all blocks in M require no

further maintenance activity because M's consistency was not disturbed.

Furthermore, the blocks which are assigned in other modules for invocations to

M are not affected by the logical ripple effect for the same reason.

Hence, the set of modules which are only affected by error flow will be

formed first by taking the set difference of 74 and (M n e), where vz* n
is the set of modules affected by both error flow and logical ripple effect.

For each module M in (- e_)), the set L R is specified to be empty.
The set LK is assigned the set Lk for each module Mk in . Then, for each

module M. in (74 -(M n) delete the blocks and their error sources which
3RV fare assigned for invocations to M from the respective Lk's for which

invoke Mj.

After all modules affected only by error flow have been processed, the

L jRs will contain the blocks affected by logical ripple effect and their

associated error sources. The maintenance personnel should check the blocks

and their error sources in the L R's to insure their logical consistency with

the initial modification.

6.0 References

[11 Yau, S. S., Collofello, J. S., and MacGregor, T., "Ripple Effect Analysis
of Software Maintenance," Proc. of COMPSAC 78, pp. 60-65.

[2] Rye, P., Bamberger, F., Ostanek, W., Brodeur, N. and Goode, J., Software
Systems Development: A CSDL Project History, RADC-TR-77-213, pp. 33-41.

[3] Goodenough, J. B., and Zara, R. V., "The Effect of Software Structure on
Software Reliability, Modifiability, and Resuability: A Case Study and
Analysis," Softech Incorporated, July 1974, p. 82.

33

[4] McCall, J. A., Richards, P. K., and Walters, G. F., Factors in Software
Quality, Volumes I, II, and III, General Electric Company, pp. 2-3, 3-%
7-9.

[51 Goullon, H., Isle, R., and Lohr, K., "Dynamic Restructuring in an Exper-
imental Operating System," Proc. Third International Conf. on Software
Engineering, 1978, pp. 295-304.

[6] Ringland, G. and Trice, A. R., "Pilot Implementations of Reliable Sys-
tems," Software Practice and Experience, Vol. 8, May-June 1978,
pp. 323-339.

[71 Yoixrdon, E. and Constantine, L., Structured Design, Yourdon, Inc., 1976,
p. 392.

[81 Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, May 1973, pp. 48-59.

[9] Zelkowitz, M. V., "Perspectives on Software Engineering," ACM Computing
Surveys, Vol. 10, No. 2, June 1978, pp. 197-216.

[10] Ramamoorthy, C. V., and Ho, S. F., "Testing Large Software with Auto-
mated Software Evaluation Systems," Current Trends in Programming
Methodology.Volume II, (R. Yeh, ed.), Prentice-Hall, Inc., 1977,
pp. 112-150.

[111 Haney, F. M., "Module Connection Analysis--A Tool for Scheduling Soft-
ware Debugging Activities," Proc. Fall Joint Computer Conf., 1972,
pp. 173-179.

[12] Yau, S. S., "Self-Metric Software--Summary of Technical Progress," Vol I
Final Technical Report.

[13] Yau, S. S. and Collofello, J. S., "Self-Metric Software, Vol III"--A
Handbook: Part II, Performance Ripple Effect Analysis", Final Technical
Report.

[141 Yau, S. S. and Collofello, J. S., "Performance Considerations in the
Maintenance Phase of Large-Scale Systems," RADC-TR-79-129, June 1979.

[151 Yau, S. S. and Collofello, J.S., "Performance Ripple Effect Analysis
for Large-Scale Software Maintenance," RADC-TR-80-55, December 1979.

34

MISSION
Of

Rom Air Development Center
RAV Ptan6 and executeA Jte6SWxch, devetopuient, tt and
.6eteeted aequi.ition ptoguwm~ in auppoxrt o6 Comma~nd, Conut~o
Countcoationis and InteLUgence (C31! acttieA. Teedmiat
and engineei'ng 6ttppo'v win a~eA6 oj techn.&At competence
i-6 p'Lovided to ESP P'toguAmineu (PO.6) and othex ESP
eemUent6. The p'r..n4at .technLeAt mZ6hion a~eah aae
commu~catonA6, ettAomagflet gudadnce and eofltJLot 6u,%-
ueittance od gund and aw.'6 pace objects, intettigence data
eotteeion and handting, inj~o'mation ayatent technotogy,
iono.6pheA.Lc ptopag4.t~on, 4oaid state acZeflce6, mcicuoIve
phpiuc and etetwonic %LetabtUt#, rnaintnabitit4 and
eornpatibitty.

